Strategies to Improve Maternal COVID-19 Vaccine Uptake While Pregnant and Breastfeeding

DECEMBER 9TH, 2021
12 PM EST

Presenters –
• Dr. Karen Puopolo M.D., Ph.D.
• Dr. Meg Kawan MD, MPH, IBCLC
• Sarah Mann J.D., and a national parent advocate
Housekeeping

• All participants will remain muted during the session
• If you have questions for the presenters, please add your questions to the Q&A box to be answered at the end of all three presentations
• For technical assistance, please add your questions into the chat box and someone from our team will assist you
• CME credits will be available after this session. Information on how to obtain credit will be emailed to all participants following the webinar.
Objectives

At the end of this session, participants will be able to:

• Recognize the current data on pregnancy and post-pregnancy COVID-19 vaccine uptake
• Understand the COVID-19 vaccine placental antibody transfer among vaccinated pregnant people
• Understand the COVID-19 vaccine breastfeeding transfer of antibodies among vaccinated pregnant people
• Utilize strategies to improve and encourage vaccine uptake as a vaccine champion with parents pre- and post-birth
TODAY'S PRESENTERS

Karen M. Puopolo, M.D., Ph.D.
TODAY'S PRESENTERS

Dr. Meg Kawan MD, MPH, IBCLC
TODAY'S PRESENTERS

Sarah Mann, J.D. and a national parent advocate
Pregnancy, COVID-19 and Vaccines

Karen M. Puopolo MD, PhD

Division of Neonatology, Children’s Hospital of Philadelphia
Section Chief, Newborn Medicine, Pennsylvania Hospital
Associate Professor of Pediatrics
University of Pennsylvania Perelman School of Medicine
Conflicts of Interest

• Karen M. Puopolo, M.D., Ph.D. has documented no financial relationships to disclose or Conflicts of Interest to resolve

• This presentation will discuss the use of vaccines currently being administered under FDA Emergency Use Authorization

• Funding: Work discussed today was supported in part by institutional funds from the University of Pennsylvania; NIH grants AI082630 (to E. Wherry) and UL1TR001878 (to D. Rader); CHOP Foerderer Grant (to K. Puopolo); Parker Institute for Cancer Immunotherapy (to E. Wherry); and charitable contributions.
Current COVID-19 Data

WHO data 12/7/2021
- 265,713,467 cases
- 5,260,888 deaths
- 7,952,750,402 vaccine doses

CDC U.S. data 12/6/2021
- 49,198,746 cases
- 787,064 deaths
- 234,000,000 ≥1 vaccine dose
- 75.7% of all persons ≥5 years

CDC U.S. data 12/6/2021
- 150,036 cases
- 25,402 hospitalized for COVID
- 35% of all pregnant persons are fully vaccinated

Pregnant Persons
- 248 deaths
- 30 deaths
Outline for Today

• Impact of COVID-19 on pregnant persons
• Safety data on COVID-19 vaccination during pregnancy
• Current data on pregnancy and post-pregnancy COVID-19 vaccine uptake
• Placental antibody transfer among vaccinated pregnant people
IMPACT OF SARS-COV-2 INFECTION ON PREGNANT WOMEN
Seroepidemiology Among Pregnant Women in Philadelphia Region

• Seroprevalence studies are an important component of the public health response to COVID-19
 • Viral testing data may underestimate mild/asymptomatic cases
 • Assuming all exposures result in immune response, may be a more complete reflection of community exposure
Study Procedures

• Residual sera collected for clinical purposes and scheduled for discard after maternal birth hospital discharge was collected, de-identified and transferred to research laboratory

• Sera tested by enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2 IgG and IgM antibodies to the spike protein receptor binding domain (RBD) antigen

• Limited data collection from review of electronic medical records
SARS-CoV-2 Seroprevalence Among Parturient Women Delivering in Philadelphia

- 1293 women delivering April 4 – June 3, 2020
- 6.2% of parturient women with IgG and/or IgM at time of delivery
- At the same time, reported cases in the region based on viral testing suggested an infection rate of 1.4%, more than 4-fold lower

Seroprevalence: Two-Week Moving Average (4/8 – 11/17/2020)

Overall (7.6%, n=5230)

Puopolo and Hensley, unpublished data
Seroprevalence: Two-Week Moving Average (4/8 – 11/17/2020)

Puopolo and Hensley, unpublished data
Seroprevalence: Two-Week Moving Average (4/8 – 11/17/2020)

Hispanic (18.1%, n=474)
Black (11.7%, n=2269)
Overall (7.6%, n=5230)
White (1.7%, n=1886)
Asian (1.6%, n=365)

*Race/ethnicity unknown or other for 236 (4.5%)

Puopolo and Hensley, unpublished data
Maternal Seroprevalence April 2020 - February 2021

7376 parturients

*Race/ethnicity unknown or other for 316 (4.3%)

Puopolo and Hensley, unpublished data
CDC Surveillance COVID-19 Outcomes

<table>
<thead>
<tr>
<th></th>
<th>MMWR 6/26/2020 Vol. 69 / No. 25</th>
<th>MMWR 11/6/2020 Vol. 69 / No. 44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>1/22/2020 – 6/7/2020</td>
<td>1/22/2020– 10/3/2020</td>
</tr>
<tr>
<td>Population</td>
<td>Females age 15-44 years</td>
<td>Females age 15-44 years</td>
</tr>
<tr>
<td></td>
<td>Symptomatic with laboratory-confirmed infection</td>
<td>Symptomatic with laboratory-confirmed infection</td>
</tr>
<tr>
<td>Not pregnant, n</td>
<td>83,205</td>
<td>386,028</td>
</tr>
<tr>
<td>Confirmed pregnant, n</td>
<td>8207</td>
<td>23,434</td>
</tr>
<tr>
<td>Admission to ICU for COVID, aRR (95% CI)</td>
<td>1.5 (1.2–1.8)</td>
<td>3.0 (2.6–3.4)</td>
</tr>
<tr>
<td>Mechanical ventilation, aRR (95% CI)</td>
<td>1.7 (1.2-2.4)</td>
<td>2.9 (2.2–3.8)</td>
</tr>
<tr>
<td>Death, aRR (95% CI)</td>
<td>0.9 (0.5-1.5)</td>
<td>1.7 (1.2–2.4)</td>
</tr>
</tbody>
</table>

For pregnant persons with COVID-19, **absolute risks per 1000**:

- 10.5 admit ICU
- 2.9 intubated
- 0.7 ECMO
- 1.5 die

Note: US maternal mortality 0.2/1000

Adjusted for age, race/ethnicity and underlying conditions
Delta Variant May be Worse

• CDC surveillance in Mississippi, 3/1/2020 – 10/6/2021
• 1637 SARS-CoV-2 infections during pregnancy; 15 deaths
 – Pre-Delta variant: deaths 5/1000 (95% CI, 1.7-10.3)
 – Delta variant: deaths 25/1000 (95% CI, 11.3-46.8)
• 14/15 unvaccinated; 1 person partially vaccinated
• 14/15 had underlying conditions [obesity (10), HTN (8), diabetes (4), cancer (2), HIV (1)]
• 12 live births; 3 fetal deaths

Kasehagen, et al. MMWR 11/26/2021:70, No. 47
AAP Perinatal COVID Registry

• From 4/6/2020–3/19/2021, data for 7570 pregnant persons and 7647 live births submitted from 252 U.S. centers

• 2.2% of newborns tested positive for SARS-CoV-2 at 24-72 hours of age

• 15.6% infants born <37 weeks’ gestation
 —Higher than overall rate ~10% in 2019

• 18 maternal deaths during birth hospitalization
 —Higher than expected 1-2 deaths

Hudak and Puopolo, unpublished data
SAFETY OF COVID-19 VACCINES GIVEN DURING PREGNANCY
National Surveillance in Israel

- Database including ~50% of all citizens
- Matched 884,828 vaccinated to 884,823 unvaccinated persons
 - Demographic factors and risk factors for COVID-19
 - 12,164 pregnant persons
- Comparison group: 173,106 infected to 173,106 uninfected with SARS-Cov-2
 - 9918 pregnant persons

Norwegian Case-Control Study

- February – August 2021
- Matched
 - 13,956 women with ongoing pregnancies (5.5% were vaccinated)
 - 4521 women with miscarriages (5.1% were vaccinated)
- Estimated odds ratios with for COVID-19 vaccination within 5-week and 3-week windows before a miscarriage or ongoing pregnancy, adjusting for demographic factors and risk factors for COVID-19
- Among those with miscarriage:
 - Vaccination in prior 3 weeks: OR 0.91 (95% CI, 0.75 to 1.10)
 - Vaccination in prior 5 weeks: OR 0.81 (95% CI, 0.69 to 0.95)

CDC V-Safe Surveillance and Miscarriage

- Smartphone-based, voluntary post-vaccine registry
- Participants with a singleton pregnancy
- ≥1 dose of mRNA vaccine before conception or before 20 weeks’ gestation and no pregnancy loss before 6 weeks of gestation

- Overall rate 14.1% (95% CI, 12.1 to 16.1)
- Age-adjusted rate 12.8% (95% CI, 10.8 to 14.8)
- 65 participants could not be reached; sensitivity analysis with assumption all had miscarriage
- Comparable to historical cohorts

ACCEPTANCE OF COVID-19 VACCINES DURING PREGNANCY
Percent of Pregnant People Vaccinated Before; Before and During; or During Pregnancy

- Persons ages 18-49
- 3/13/2021 – 11/27/2021

Plateaued this fall at ~35%

Source: https://covid.cdc.gov/covid-data-tracker/#vaccinations-pregnant-women
Percent of Pregnant People Receiving Vaccine During Pregnancy by Race/Ethnicity

- Persons ages 18-49 who received at least one dose
- 3/13/2021 – 11/27/2021

Source: https://covid.cdc.gov/covid-data-tracker/#vaccinations-pregnant-women
Percent of Pregnant People Fully Vaccinated Before or During Pregnancy by Race/Ethnicity

- Persons ages 18-49
- 3/13/2021 – 11/27/2021

Source: https://covid.cdc.gov/covid-data-tracker/#vaccinations-pregnant-women
TRANSPLACENTAL TRANSFER OF INFECTION-INDUCED AND VACCINE-INDUCED ANTIBODY
Can Maternal Immunity Protect the Newborn?

• Newborn immunity derives from
 – Innate immune responses
 – Maternally-derived, transplacentally-acquired antibody
 – Breast milk-acquired immunity/protection

• Most perinatal guidance around infectious diseases is centered on how maternally-derived immunity protects newborn
 – Maternal infections at birth (e.g., varicella)
 – ACOG recommendations for maternal influenza and TdaP vaccine
Transplacental Antibody Study

- Scavenged maternal and cord blood sera after clinical use when scheduled for discard
 - April 9 – August 8, 2020
 - Pennsylvania Hospital

1714 Deliveries

Matched pairs n=1471

Mother seronegative n=1388

Mother seropositive n=83

Infant seronegative n=1388

Infant seropositive n=72

Infant seronegative n=11

Flannery, et al. JAMA Pediatr 2021
Antibody Levels and Transfer Similar Over Spectrum of Maternal Illness

<table>
<thead>
<tr>
<th></th>
<th>Asymptomatic (n = 50)</th>
<th>Mild disease (n = 25)</th>
<th>Moderate to critical (n = 8)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal IgG level, geometric mean (95% CI)</td>
<td>3.92 (2.82–5.46)</td>
<td>4.44 (2.67–7.38)</td>
<td>15.27 (5.82–40.09)</td>
<td>0.91</td>
</tr>
<tr>
<td>Cord IgG level, geometric mean (95% CI)</td>
<td>4.01 (2.77–5.83)</td>
<td>3.09 (1.59–6.01)</td>
<td>14.58 (4.26–49.84)</td>
<td>0.44</td>
</tr>
<tr>
<td>Transfer ratio (%), geometric mean (95% CI)</td>
<td>1.02 (0.85–1.23)</td>
<td>0.70 (0.48–1.01)</td>
<td>0.95 (0.45–2.01)</td>
<td>0.34</td>
</tr>
</tbody>
</table>

No differences by maternal age, race/ethnicity, pre-pregnancy BMI, gestational HTN, diabetes, asthma

Transfer detectable to 31 weeks’ gestation at birth
Maternal Antibody Level Correlates with Transfer

• SARS-CoV-2 IgM antibodies were not detectable in any of the 72 seropositive infants

• **Positive correlation between SARS-CoV-2 IgG levels in cord and maternal sera**

• Among 11 cases of seropositive mother and seronegative infant
 – In 5 cases, mother was seropositive only by IgM (without IgG)
 – In 6 cases, maternal geometric mean IgG levels were very low (p=0.005)
Transfer Ratio Dependent on Time from Maternal Infection

- Among mothers with well-dated onset of illness and NP-testing
 - Cord IgG present in all cases if the onset of maternal illness was >17 days before birth
 - Transfer ratio increases with increasing time from illness to delivery
Vaccine Serology Study Cohort

- Scavenged maternal and cord blood sera after clinical use when scheduled for discard
 - August 12, 2020 - April 25, 2021
 - Pennsylvania Hospital

Puopolo, unpublished data
Relative Maternal Antibody Response

Puopolo, unpublished data
SARS-CoV-2 Antibody Due to Infection

<table>
<thead>
<tr>
<th></th>
<th>All N=407</th>
<th>Asymptomatic Infection</th>
<th>Symptomatic Infection N=142</th>
<th>P-value(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PCR test positive N=38</td>
<td>PCR test negative or N/D N=227</td>
<td></td>
</tr>
<tr>
<td>Maternal IgG concentration, geometric mean (95% CI)</td>
<td>2.8 (2.5-3.1)</td>
<td>3.4 (2.3-4.9)</td>
<td>2.3 (2.0-2.6)</td>
<td>3.7 (3.0-4.5)</td>
</tr>
<tr>
<td>Cord IgG >0.48 U/mL, n (%)</td>
<td>381 (93.6)</td>
<td>33 (86.8)</td>
<td>215 (94.7)</td>
<td>133 (93.7)</td>
</tr>
<tr>
<td>Cord IgG concentration, geometric mean (95% CI)</td>
<td>3.0 (2.6-3.3)</td>
<td>2.4 (1.5-3.9)</td>
<td>2.6 (2.2-3.0)</td>
<td>3.9 (3.2-4.8)</td>
</tr>
<tr>
<td>Transfer ratio, geometric mean (95% CI)</td>
<td>1.1 (1.0-1.2)</td>
<td>0.7 (0.5-1.0)</td>
<td>1.1 (1.0-1.3)</td>
<td>1.1 (0.9-1.2)</td>
</tr>
</tbody>
</table>

Puopolo, unpublished data
SARS-CoV-2 Antibody After Vaccine

<table>
<thead>
<tr>
<th></th>
<th>All* N=171</th>
<th>Vaccine administered</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BNT162b2 N=98</td>
<td></td>
</tr>
<tr>
<td>Days from 1st vaccine dose to delivery, median (Q1, Q3)</td>
<td>43 (26, 63)</td>
<td>41 (25, 61)</td>
<td>0.30</td>
</tr>
<tr>
<td>Maternal IgG concentration, geometric mean (95% CI)</td>
<td>33.8 (27.7-41.4)</td>
<td>25.6 (19.3-33.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cord IgG >0.48 U/mL, n (%)</td>
<td>169 (98.8)</td>
<td>97 (99.0)</td>
<td>0.72</td>
</tr>
<tr>
<td>Cord IgG concentration, geometric mean (95% CI)</td>
<td>27.2 (21.2-34.8)</td>
<td>21.7 (15.3-30.8)</td>
<td>0.04</td>
</tr>
<tr>
<td>Transfer ratio(^e), geometric mean (95% CI)</td>
<td>0.8 (0.7-0.9)</td>
<td>0.9 (0.7-1.0)</td>
<td>0.15</td>
</tr>
</tbody>
</table>

*Vaccine type unknown in 11 cases

Puopolo, unpublished data
<table>
<thead>
<tr>
<th></th>
<th>Infection N=407</th>
<th>Vaccine N=171</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal IgG concentration, geometric mean (95% CI)</td>
<td>2.8 (2.5-3.1)</td>
<td>33.8 (27.7-41.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cord IgG concentration, geometric mean (95% CI)</td>
<td>3.0 (2.6-3.3)</td>
<td>27.2 (21.2-34.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Transfer ratio, geometric mean (95% CI)</td>
<td>1.1 (1.0-1.15)</td>
<td>0.80 (0.7-0.9)</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Puopolo, unpublished data
Transfer Ratio and Time

Puopolo, unpublished data
Conclusions

• SARS-CoV-2 infection can cause more severe disease in pregnant women compared to age-matched, non-pregnant women

• Women giving birth at Philadelphia Penn hospitals have significant levels of exposure to SARS-CoV-2 with differences by race/ethnicity

• mRNA vaccines appear safe for pregnant women

• Vaccines induce higher antibody response to spike protein than infection

• Efficient transplacental antibody transfer seen with antibody due to infection and after vaccination
Acknowledgements

CPPID Study Team
Dustin Flannery
Sagori Mukhopadhyay
Miren Dhudasia
Madeline Pfeifer
Emily Woodford
Jeffrey Gerber
Karen Puopolo

Hensley lab
Sigrid Gouma
Elizabeth Anderson
Claudia Arevalo
Marcus Bolton
Eileen Goodwin
Madison Weirick
Scott Hensley

Penn Obstetrics
Jourdie Triebwasser
Michal Elovitz

Penn Biostatistics
Jeff Morris

Penn Department of Microbiology

Penn Blood Bank and Clinical Laboratories

Thanks to
Members of the Wherry Lab
Penn COVID-19 Sample Processing Unit
Staff of the Penn Medicine BioBank
F. Krammer (Mt. Sinai) for sending the SARS-CoV-2 spike RBD expression
S. Melly (Drexel University) for the assistance in geographic analyses
J. Lurie, J. Embiid, J. Harris, and D. Blitzer for philanthropic support
Breast/Chest feeding and the COVID-19 Vaccine

Meg Kawan, MD, MPH, IBCLC
Children’s Hospital of Philadelphia
PA Chapter American Academy of Pediatrics
December 9, 2021
Gender Neutral Language

- “Breast/chest feeding” has become more commonly used term
- Language surrounding pregnancy, birth and lactation have previously been heteronormative and female-gendered
- Important to recognize that this language is not inclusive of many individuals and affirm importance of using appropriate terms
Background

• COVID-19 vaccine approval: EUA for Pfizer and Moderna December 2020

• Lactating individuals excluded from clinical trials – no clinical data on safety of vaccine in nursing parents

• Challenging as many lactating individuals were frontline health care workers and essential workers
Initial Considerations – Dec. 2020

- Emphasis on shared decision making
- Based on mechanism, consensus of experts within ACIP, CDC, ACOG, AAP, and other organizations emphasized minimal risk and emphasized potential benefits to lactating child
- Academy of Breastfeeding Medicine issued guidance, “while there is little plausible risk to the child, there is a biologically plausible benefit.”
- Website: https://www.bfmed.org/abm-statement-considerations-for-covid-19-vaccination-in-lactation
UK experience

• UK initially withheld vaccine to lactating individuals for first month due to safety concerns

• Public outcry

“This data gap is not an anomaly. It is the result of a system of researching and licensing drugs that routinely discriminates against women, excludes them from the evidence base, and denies them the right to make informed choices about their own health. We implore researchers, industry leaders, and the MHRA to remember that pregnant and breastfeeding women are essential patient populations, not merely women who can wait.”

Opinion; BMJ: Why Were Breastfeeding Women in the UK Denied the COVID vaccine. BMJ 2021;372:n4
Acceptance of vaccination in lactation

- Limited data
- One study of 1012 respondents found vaccine acceptance of 55.2% compared with 76.2% of non-pregnant respondents and 44.3% of pregnant respondents
Initial Questions

• Is vaccine safe for lactating parent and breastfeeding infant?
• Any unusual side effects for parent? Breastfeeding infant?
• Should lactating individuals who choose to receive the vaccine stop breastfeeding?
• Is there a need to “pump and dump” after vaccination?
• Does this vaccine offer protection to breastfeeding infant? For how long?
Breastfeeding infant - considerations

• Initial small study of six lactating parents milk samples demonstrated no evidence of vaccine mRNA in breast milk samples in first 48 hours after vaccination

• Multiple studies have now shown vaccine-stimulated Immunoglobulin A passes through breast milk
Breastfeeding infant - immunity

• Prospective, observational study from University of Florida evaluated milk and plasma samples from 22 vaccinated HCW with no known history of COVID-19 infection
• Plasma and human milk samples were collected at 3 time points, pre-vaccination, post first dose and post second dose
FIG. 1. Box and whisker plots of SARS-CoV-2-specific antibodies (IgA and IgG) in human milk and plasma pre-vaccination, post-first dose of vaccine, and post-second dose of vaccine measured as unit/mL (A) IgA in human milk, (B) IgA in plasma, (C) IgG in human milk, and (D) IgG in plasma.

http://doi.org/10.1089/bfm.2021.0122
Six month update

A. SARS-CoV-2 IgA in human milk
B. SARS-CoV-2 IgG in human milk

C. SARS-CoV-2 IgA in plasma
C. SARS-CoV-2 IgG in plasma
Breastfed infant- considerations

• Observational, non-blinded, prospective cohort study design was utilized to analyze COVID-19 mRNA vaccine potential effects on breastfed infants
• 1st dose: 1,154 participants Control N=73, Pfizer N=770, Moderna N=311
• For the second dose: 722 participants, Control N=56, Pfizer N=464, Moderna N=202.
Lactating parent - considerations

- Lymphadenopathy, engorgement and breast pain – common side effects after both doses, compared with controls, more notable on side of vaccination.
- Milk supply- transient drop in milk supply noted after second Pfizer vaccine,
- Increased risk of mastitis, although not statistically significant.
Evaluating parent and child outcomes

• Survey of 180 lactating parents who received both doses of mRNA vaccine (71.1% Pfizer, 28.9% Moderna)
• Child age of enrollment averaged 7.47 months
• 8.0% of parents receiving Pfizer and 23.4% of parents receiving Moderna reported transient drop in milk supply, resolved by 72 hours
• 3 women reported change in milk color (blue green)
• Few child events reported: fussiness/irritability (10%), poor sleep (8%)
Larger study – Dr. Hale and colleagues

- Cross-sectional survey of 4,455 mothers
- Post-vaccination symptoms more common after second dose
- Only 1.7% of respondents reported negative effect on lactation
- 89.4% of respondents reported that they “strongly agreed” they would make same choice to receive vaccination again, only 0.2% reported they disagreed.
Dr. Hale and colleagues, infant effects

FIG. 3. Percentage of mothers reporting symptoms in their breastfed children following COVID-19 vaccination. Total number of mothers was 2,627 (one dose) and 1,828
Breastmilk Antibodies – Neutralizing effect

- Observational cohort study of milk samples of 47 lactating parents post COVID infection and 30 lactating parents post-vaccination
- Antibody response after infection was IgA dominant and highly variable, vs antibody response after vaccination was more robust, IgG dominant.
- Milk antibodies isolated from both groups showed neutralizing activity against live SARS-Cov2 virus
Duration of vaccination effect?

• Immune protection provided through human milk is passive immunity
• When eligible – breastfed infants/toddlers should receive vaccination
• Anecdotally, more parents breastfeeding for longer duration

Los Angeles Times
Breastfeeding and vaxxed: Parents delay weaning children to pass on COVID-19 antibodies
Conclusions

• COVID-19 vaccination is safe and well-tolerated in lactating parents.
• Adverse effects are minimal and transient in both lactating parent and breastfed infant
• There is no role for “pumping and dumping” after vaccination
• Breastfed infant receives immune protection after vaccination through SARS-CoV-2 specific IgA and IgG antibodies.
• Adverse effects to lactating parent may include lymphadenopathy, transient decrease to milk supply
• Adverse effects to breastfed infant are minimal, may include fussiness/irritability, small % of infants may develop fever related to vaccination.
References

Thank you!

Photo credit: Dr. Michele Pena, Division of Neonatology
Our Vaccine Story

Sarah & Baby Lauren
Be Patient With Your Patients

• Pregnancy Nerves
• Constant Caution
• Information Overload
• Need For Control
Nurses, Doctors, Teachers & Military Are Most Respected Jobs

Which of the following professions do you respect the most? (Top 8 Responses)

<table>
<thead>
<tr>
<th>Total</th>
<th>MALE</th>
<th>FEM</th>
<th>GOP</th>
<th>SWING</th>
<th>DEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>49%</td>
<td>34%</td>
<td>62%</td>
<td>49%</td>
<td>53%</td>
<td>47%</td>
</tr>
<tr>
<td>47%</td>
<td>42%</td>
<td>52%</td>
<td>45%</td>
<td>46%</td>
<td>49%</td>
</tr>
<tr>
<td>45%</td>
<td>42%</td>
<td>47%</td>
<td>71%</td>
<td>44%</td>
<td>36%</td>
</tr>
<tr>
<td>34%</td>
<td>32%</td>
<td>35%</td>
<td>10%</td>
<td>34%</td>
<td>42%</td>
</tr>
<tr>
<td>26%</td>
<td>29%</td>
<td>24%</td>
<td>11%</td>
<td>25%</td>
<td>33%</td>
</tr>
<tr>
<td>21%</td>
<td>18%</td>
<td>23%</td>
<td>45%</td>
<td>21%</td>
<td>10%</td>
</tr>
<tr>
<td>21%</td>
<td>20%</td>
<td>21%</td>
<td>17%</td>
<td>22%</td>
<td>21%</td>
</tr>
<tr>
<td>12%</td>
<td>14%</td>
<td>11%</td>
<td>18%</td>
<td>15%</td>
<td>7%</td>
</tr>
</tbody>
</table>

- Nurses/Doctors (49% Total, 53% SWING)
- Teachers (47% Total, 49% DEM)
- Military/soldiers (45% Total, 71% GOP)
- Scientists (34% Total, 34% DEM)
- Technology innovators (26% Total, 25% SWING)
- Police officers (21% Total, 45% GOP)
- Entrepreneurs/Small business owners (21% Total, 22% SWING)
- Ministers/priests/rabbis (12% Total, 18% GOP)
Encouraging Vaccines

- Remind Patients of Your Mission
- Empathy & Understanding
- Share Stories
- Make Education Easy
- Prepare Advocates
- Ask & Answer Questions
Q&A Session

Sarah Mann, a national parent advocate

Dr. Meg Kawan MD, MPH, IBCLC

Dr. Karen Puopolo M.D., Ph.D.
This activity is approved for AMA PRA Category 1 Credit TM for physicians. All other learners will receive a certificate of attendance.

Attendees will receive an email with directions on how to obtain the credits.

Thank you for attending!