“COVID-19 Update: Kids, Omicron and Boosters”

Presenter:

Paul A. Offit, MD, FAAP
Attending Physician, Division of Infectious Diseases
Director, Vaccine Education Center
The Children’s Hospital of Philadelphia

Session Learning Objectives:
As a result of participation in this activity, participants will be able to:

- Describe the basic structure and results of the Pfizer COVID vaccine trial involving five- to eleven-year-old children
- Discuss the potential benefits of a third "booster" dose of COVID vaccine for different patient populations
- Describe the risks of myocarditis and other inflammatory syndromes associated with COVID infection, and possibly with COVID vaccines
- Compare the clinical characteristics of the emerging Omicron variant to earlier variants of the SARS-CoV-2 virus

This webinar will begin at 8:00 PM EST
COVID-19 Update: Kids, Omicron, and Boosters

Paul A. Offit, MD
Division of Infectious Diseases
Vaccine Education Center
The Children’s Hospital of Philadelphia
Perelman School of Medicine
The University of Pennsylvania
January 19, 2022
COVID-19 and Young Children
Proportion of Total COVID-19 Cases by Age Group
— March 1, 2020–October 10, 2021

Children 5-11 years are making up a greater proportion of total cases: **10.6%** of cases the week of October 10, 2021

https://covid.cdc.gov/covid-data-tracker/#demographicsovertime
COVID-19 Weekly Cases per 100,000 Population by Age — March 1, 2020–October 10, 2021

>1.9 million cases among children 5-11 years of age

https://covid.cdc.gov/covid-data-tracker/#demographicsovertime
Children Aged 5–11 Years Hospitalized with COVID-19—COVID-NET, March 2020–August 2021

Demographic and clinical characteristics

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>562</td>
<td>(100)</td>
</tr>
<tr>
<td>Age (yrs) – median (IQR)</td>
<td>8</td>
<td>(6–10)</td>
</tr>
<tr>
<td>Sex – Male</td>
<td>320</td>
<td>(57)</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black, non-Hispanic</td>
<td>207</td>
<td>(37)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>177</td>
<td>(31)</td>
</tr>
<tr>
<td>White, non-Hispanic</td>
<td>124</td>
<td>(22)</td>
</tr>
<tr>
<td>Asian, non-Hispanic</td>
<td>23</td>
<td>(4)</td>
</tr>
<tr>
<td>Other, non-Hispanic</td>
<td>31</td>
<td>(6)</td>
</tr>
<tr>
<td>Severe disease §</td>
<td>200</td>
<td>(36)</td>
</tr>
<tr>
<td>≥1 underlying condition</td>
<td>381</td>
<td>(68)</td>
</tr>
</tbody>
</table>

Prevalence of underlying medical conditions

- Chronic lung disease: 29%
- Obesity*: 25%
- Neurologic disorders: 23%
- Cardiovascular disease: 11%
- Blood disorders: 9%
- Immunosuppressed conditions: 9%
- Chronic metabolic disease†: 6%
- Feeding tube dependence: 6%
- Other condition¶: 9%

§Requiring intensive care unit admission or mechanical ventilation
*BMI (kg/m²) ≥95th percentile for age and sex based on CDC growth charts, ICD-10 codes for obesity, or obesity selected on case report form
†Includes type I and type II diabetes mellitus
¶Includes gastrointestinal or liver disease; renal disease; rheumatologic, autoimmune, inflammatory conditions; abnormality of the airway
Leading Causes of Death in Children 5-11 Years of Age, NCHS, 2019

<table>
<thead>
<tr>
<th>Causes of Death</th>
<th>Death (n)</th>
<th>Crude rate per 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accidents (unintentional injuries)</td>
<td>969</td>
<td>3.4</td>
</tr>
<tr>
<td>Malignant neoplasms</td>
<td>525</td>
<td>1.8</td>
</tr>
<tr>
<td>Congenital malformations, deformations and chromosomal abnormalities</td>
<td>274</td>
<td>1.0</td>
</tr>
<tr>
<td>Assault (homicide)</td>
<td>207</td>
<td>0.7</td>
</tr>
<tr>
<td>Diseases of the heart</td>
<td>115</td>
<td>0.4</td>
</tr>
<tr>
<td>Chronic lower respiratory diseases</td>
<td>107</td>
<td>0.4</td>
</tr>
<tr>
<td>Influenza and pneumonia</td>
<td>84</td>
<td>0.3</td>
</tr>
<tr>
<td>Intentional self-harm (suicide)</td>
<td>66</td>
<td>0.2</td>
</tr>
<tr>
<td>Cerebrovascular diseases</td>
<td>56</td>
<td>0.2</td>
</tr>
<tr>
<td>Septicemia</td>
<td>48</td>
<td>0.2</td>
</tr>
</tbody>
</table>

66 COVID-19 associated deaths in children 5-11 10/3/20-10/2/2021

Total population 5-17 years, 2019: 52,715,248

Multisystem Inflammatory Syndrome in Children (MIS-C)

- Severe hyperinflammatory syndrome occurring 2-6 weeks after acute SARS-CoV-2 infection, resulting in a wide range of manifestations and complications
 - 60-70% of patients are admitted to intensive care, 1-2% die\(^1,2\)

- **5,217 MIS-C cases** have been reported to national surveillance as of October 4, 2021\(^3\)
 - Median age of **9 years**, 39% of cases occurred in children 6-11 years
 - 61% occurred in children who are Hispanic/Latino or Black, Non-Hispanic
 - Adjusted incidence estimates ~100-600 cases per million SARS-Cov-2 infections\(^4\)

Burden of COVID-19 in children 5-11 years of age

- 1.9 million cases
- 8,300 hospitalizations
- 2,316 Multisystem Inflammatory Syndrome in Children (MIS-C) cases
- 94 deaths

Burden extends beyond case counts; school interrupted, lives disrupted
COVID-19 Related K-12 School Closures by State, August 2, 2021 – October 22, 2021

<table>
<thead>
<tr>
<th>School districts closed</th>
<th>Total # schools closed*</th>
<th>Estimated # students affected*</th>
<th>Estimated # teachers affected*</th>
</tr>
</thead>
<tbody>
<tr>
<td>313</td>
<td>2,351</td>
<td>1,217,777</td>
<td>78,134</td>
</tr>
</tbody>
</table>

Data from the Unplanned School Closure Monitoring Project (DGMQ/CDC), ongoing research that uses systematic daily media searches (methods explained in https://doi.org/10.1371/journal.pone.0248925).

* Number of schools closed in district-wide closures, total number of students, and total number of teachers are estimated by matching the public school district ID or school ID with the district/school data for school year 2019/20 and private school ID with school data for year 2017/18 as obtained from the National Center for Education Statistics (https://nces.ed.gov/ccd/elsi/tableGenerator.aspx, accessed on Apr 20, 2021). Due to missing information in 2019/20 data, the total number of public school teachers in California is estimated using 2018/19 NCES data.
Are COVID-19 vaccines effective in young children?
Pfizer-BioNTech Pediatric COVID-19 Vaccine BNT162b2: Study Overview: 5 to <12 Years

Phase 1
- 48 PARTICIPANTS
 - 5 to <12 yrs
- Identification of preferred dose level(s)
 - 10 µg, 20 µg, 30 µg

Phase 2/3
- 2:1 randomization
- ~1500 BNT162b2
- 750 placebo
- Additional ~1500 BNT162b2 and 750 placebo recipients most with ≥2 weeks post dose 2 safety data

Non-inferior immune responses have been established to infer vaccine efficacy

Children 5 to <12 years of age Compared to 16–25-year-olds from the pivotal Phase 3 study

Although not required for EUA approval, COVID-19 surveillance was conducted permitting evaluation of vaccine efficacy
Pfizer-BioNTech COVID-19 Vaccine Formulations

12 years of age and older: PBS/Sucrose formulation

- Dilute before use
- Each dose:
 - 0.3 mL
 - 30 μg mRNA

- Must be stored frozen at -80°C until expiry date or -20°C for up to 2 weeks prior to use

5 through 11 years of age: Tris/Sucrose formulation

- Dilute before use
- Each dose:
 - 0.2 mL
 - 10 μg mRNA

- Can be stored at refrigerator temperature (2°C to 8°C) for up to 10 weeks prior to use

Tris and PBS are buffering agents that help maintain the pH and stability of the product.
High Efficacy was Observed in 5 to <12 Year Olds Descriptive Analysis of First COVID-19 Occurrence From 7 Days After Dose 2

Subjects WITHOUT Evidence of Infection Prior to 7 Days After Dose 2

<table>
<thead>
<tr>
<th>Efficacy Endpoint</th>
<th>BNT162b2 (10 µg) N=1305</th>
<th>Placebo N=663</th>
<th>VE (%) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First COVID-19 occurrence ≥7 days after Dose 2</td>
<td>3 (0.322 (1273))</td>
<td>16 (0.159 (637))</td>
<td>90.7 (67.7, 98.3)</td>
</tr>
</tbody>
</table>

No severe cases of COVID-19 were reported
No cases of MIS-C were reported

Total surveillance time: 1000 person-years for all subjects within each group at risk for the endpoint
Estimated impact of COVID-19 vaccines for young children
Estimated **benefits** for every million Pfizer-BioNTech COVID-19 vaccinations in children 5-11 years of age using **recent** incidence

<table>
<thead>
<tr>
<th>Females 5-11 years</th>
<th>Males 5-11 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚨 57,301 COVID-19 cases prevented</td>
<td>🚨 56,954 COVID-19 cases prevented</td>
</tr>
<tr>
<td>🏥 191 hospitalizations prevented</td>
<td>🏥 226 hospitalizations prevented</td>
</tr>
<tr>
<td>🏥 130 MIS-C cases prevented</td>
<td>🏥 130 MIS-C cases prevented</td>
</tr>
<tr>
<td>⏫ 60 ICU admissions prevented</td>
<td>⏫ 72 ICU admissions prevented</td>
</tr>
</tbody>
</table>

Assumptions: Benefits accrue over **180 days (6 months)**; VE against symptomatic COVID-19: 90%; VE against hospitalization: 95%

Is the COVID-19 vaccine safe for young children?
Local Reactions, by Maximum Severity, Within 7 Days After Each Dose in 5 to <12 and 16-25 Year Olds

5 to <12 yo: Redness and swelling severity definition: Mild=>0.5-2 cm, Moderate >2-7 cm; Severe >7 cm; Grade 4= necrosis
16-25 yo: Redness and swelling severity definition: Mild=>2-5cm, Moderate = >5-10 cm; Severe = >10 cm; Grade 4= necrosis
Pain at injection site severity definition: Mild=no interference; Moderate=some interference; Severe=prevents daily activity; Grade 4=ER visit or hospitalization
Dose 1: 5-<12 yrs N=2260; 16-25 yrs N=1064 Dose 2: 5-<12 yrs N=2242 16-25 yrs N=984
Systemic Events, by Maximum Severity, Within 7 Days After Dose 2 in 5 to <12 and 16-25 Year Olds

- **Systemic Events:**
 - Mild
 - Moderate
 - Severe
 - Grade 4

- **Fever:**
 - 38.0 °C-38.4 °C
 - 38.4 °C-38.9 °C
 - 38.9 °C-40.0 °C
 - >40.0 °C

- **BNT162b2**

- **Placebo**

- Fatigue, headache, chills, muscle pain, joint pain severity definition:
 - Mild = no interference
 - Moderate = some interference
 - Severe = prevents daily activity
 - Grade 4 = ER visit or hospitalization

- Vomiting severity definition:
 - Mild = 1-2 times in 24h
 - Moderate = >2 times in 24h
 - Severe = Requires IV hydration
 - Grade 4 = ER visit or hospitalization

- Diarrhea severity definition:
 - Mild = 2-3 times in 24h
 - Moderate = 4-5 times in 24h
 - Severe = 6 or more times in 24h
 - Grade 4 = ER visit or hospitalization

- Dose 2: 5-12 yrs N=2242 16-25 yrs N=984
Will COVID-19 vaccines cause myocarditis in young children?
Reassuring Fact #1: Myocarditis is less common in 12-15-year-olds than 16-17-year-olds
Vaccine Adverse Event Reporting System (VAERS): Reporting rates (per 1 million doses administered) of myocarditis **among males** after mRNA COVID-19 vaccines, 7-day risk period (N=797)*

- **169,740,953** doses of mRNA vaccine administered to males (dose 1 and dose 2) *
- Reporting rates exceed background incidence**

Highest % is among males aged 16-17 years: 0.007%

<table>
<thead>
<tr>
<th>Ages</th>
<th>Pfizer Dose 1</th>
<th>Pfizer Dose 2</th>
<th>Moderna Dose 1</th>
<th>Moderna Dose 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-15</td>
<td>4.2</td>
<td>39.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-17</td>
<td>5.7</td>
<td>69.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>2.3</td>
<td>36.8</td>
<td>6.1</td>
<td>38.5</td>
</tr>
<tr>
<td>25-29</td>
<td>1.3</td>
<td>10.8</td>
<td>3.4</td>
<td>17.2</td>
</tr>
<tr>
<td>30-39</td>
<td>0.5</td>
<td>5.2</td>
<td>2.3</td>
<td>6.7</td>
</tr>
<tr>
<td>40-49</td>
<td>0.3</td>
<td>2.0</td>
<td>0.2</td>
<td>2.9</td>
</tr>
<tr>
<td>50-64</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>65+</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

* As of Oct 6, 2021; 797 of 935 reports after doses 1 and 2 of mRNA vaccines occurred during Days 0–6 after vaccination among males; reports verified to meet case definition by provider interview or medical record review

** An estimated 1–10 cases of myocarditis per 100,000 person years occurs among people in the United States, regardless of vaccination status; adjusted for the 7-day risk period, this estimated background is 0.2 to 1.9 per 1 million person 7-day risk period
Reassuring Fact #2:
The dose of mRNA for the 5-11-year-old is one-third the dose of the 12-15-year-old.
Vial Differentiation

<table>
<thead>
<tr>
<th></th>
<th>PURPLE CAP Age: 12+ Dilute Prior to Use</th>
<th>ORANGE CAP Age: 5 to <12 Dilute Prior to Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>30 mcg</td>
<td>10 mcg</td>
</tr>
<tr>
<td>Injection Volume</td>
<td>0.3 mL</td>
<td>0.2 mL</td>
</tr>
<tr>
<td>Fill Volume</td>
<td>0.45 mL</td>
<td>1.3 mL</td>
</tr>
<tr>
<td>Amount of Diluent Needed per Vial</td>
<td>1.8 mL</td>
<td>1.3 mL</td>
</tr>
<tr>
<td>Doses per Vial</td>
<td>6 doses per vial (after dilution)</td>
<td>10 doses per vial (after dilution)</td>
</tr>
</tbody>
</table>
Reassuring Fact #3: Vaccine-induced myocarditis is generally benign
Comparing Types of Myocarditis:
Time to Normal Ejection Fraction (EF) by Echocardiogram

Patel et al. 2021
Reassuring Fact #4:
mRNA vaccines safe for young children post-EUA approval
Pfizer Vaccine Totals by Week for Children Aged 5-11 Years

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Dose 1</th>
<th>Dose 2</th>
<th>Pfizer D1+D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-11</td>
<td>257,840</td>
<td>173,645</td>
<td>431,485</td>
</tr>
</tbody>
</table>

Week Starting

- 12/27/21
- 1/24/21
- 2/21/21
- 3/18/21
- 4/15/21
- 5/12/21
- 6/9/21
- 7/6/21
- 8/3/21
- 8/31/21
- 9/28/21
- 10/25/21
- 11/22/21
- 12/19/21

doses administered
COVID-19 Vaccine Safety in Children Aged 5–11 Years — United States, November 3–December 19, 2021

Anne M. Hause, PhD¹; James Baggs, PhD¹; Paige Marquez, MSPH¹; Tanya R. Myers, PhD¹; Julianne Gee, MPH¹; John R. Su, MD, PhD¹; Bicheng Zhang, MS¹; Deborah Thompson, MD²; Tom T. Shimabukuro, MD¹; David K. Shay, MD¹

On October 29, 2021, the Food and Drug Administration (FDA) amended the Emergency Use Authorization (EUA) for Pfizer-BioNTech COVID-19 (BNT162b2) mRNA vaccine to expand its use to children aged 5–11 years, administered as 2 doses (10 μg, 0.2mL each) 3 weeks apart (1). As of December 19, 2021, only the Pfizer-BioNTech COVID-19 vaccine is similar to those from preauthorization clinical trials (4,5). The Advisory Committee on Immunization Practices (ACIP) recommends the Pfizer-BioNTech COVID-19 vaccine for children aged 5–11 years for the prevention of COVID-19 (6). Parents and guardians of children aged 5–11 years vaccinated with Pfizer-BioNTech COVID-19 vaccine should be advised that local and
Summary of the Analyses of COVID-19 Vaccine Safety Among 12–17 and 5–11-Year-Olds

- Among 12–17-year-olds, the rate ratio for myocarditis/pericarditis was elevated during days 0-7 after Dose 2.
 - The excess risk was 0.3 cases per million 1st doses.
 - The excess risk was 70 cases per million 2nd doses.
- The VSD has administered 431,485 Pfizer doses to children aged 5-11 years.
- In the VSD, there have been no safety signals among 5–11-year-olds.
Do We Need a Booster Dose?
What is the goal of COVID-19 vaccines?
Goal #1: Prevent severe illness
Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study

Sara Y Tartof, Jeff M Slezak, Heidi Fischer, Vennis Hong, Bradley K Ackerson, Omesh N Ranasinghe, Timothy B Frankland, Oluwaseye A Ogun, Joann M Zamparo, Sharon Gray, Srinivas R Valluri, Kaije Pan, Frederick J Angulo, Luis Jodar, John M McLaughlin

Summary
Background Vaccine effectiveness studies have not differentiated the effect of the delta (B.1.617.2) variant and potential waning immunity in observed reductions in effectiveness against SARS-CoV-2 infections. We aimed to evaluate overall and variant-specific effectiveness of BNT162b2 (tozinameran, Pfizer–BioNTech) against SARS-CoV-2 infections and COVID-19-related hospital admissions by time since vaccination among members of a large US health-care system.
In All Age Groups, Vaccine Effectiveness Wanes Over Time Against Infections but Not Against Hospitalizations

SARS-CoV-2 Infection

COVID-19-Related Hospitalization

Adjusted VE (95% CI) for all ≥12 years old:

- 12-15 Years Old
- 16-44 Years Old
- 45-64 Years Old
- 65+ Years Old
- All ≥12 Years Old

Adjusted VE (95% CI) for all ≥12 years old:

- 88 (86–89)
- 84 (83–86)
- 78 (76–79)
- 68 (65–70)
- 61 (58–64)
- 47 (43–51)

- 87 (82–91)
- 88 (83–92)
- 92 (89–95)
- 93 (89–95)
- 91 (87–93)
- 88 (82–92)

CC-13
Vaccine effectiveness against hospitalization over time
Adults ≥18 years of age

* February estimates from platform's May 2021 MMWR
COVID-19-associated hospitalization rates among 12–17-year-olds, by vaccination status

July 10, 2021 – December 11, 2021

Unvaccinated 12-17-year-olds had ~11x higher risk of hospitalization

Vaccine effectiveness against COVID-19 hospitalization among patients aged 12–18, 19 pediatric hospitals, 16 states, July – September, 2021

<table>
<thead>
<tr>
<th>Age group, yrs</th>
<th>Case-patients</th>
<th>Controls</th>
<th>Vaccine effectiveness, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>6/179 (3.4)</td>
<td>93/285 (32.6)</td>
<td>93 (83–97)</td>
</tr>
<tr>
<td>12–15</td>
<td>4/106 (3.8)</td>
<td>53/179 (29.6)</td>
<td>91 (74–97)</td>
</tr>
<tr>
<td>16–18</td>
<td>2/73 (2.7)</td>
<td>40/106 (37.7)</td>
<td>94 (78–99)</td>
</tr>
</tbody>
</table>

- **Limitation:** VE estimate reflects Delta dominant period

Olson SM, et al. MMWR 2021;70:1483–1488. DOI: http://dx.doi.org/10.15585/mmwr.mm7042e1
Protection against severe illness is mediated by memory B cells and T cells, which are long-lived.
mRNA Vaccination Induces Durable Immune Memory to SARS–CoV–2 with Continued Evolution to Variants of Concern

Rishi R Goel, Mark M Painter, Sokratis A Apostolidis, Divij Mathew, Wenzhao Meng, Aaron M Rosenfeld, Kendall A Lundgreen, Arnold Reynaldi, David S Khoury, Ajinkya Pattekar, Sigrid Gouma, Leticia Kuri–Cervantes, Philip Hicks, Sarah Dysinger, Amanda Hicks, Harsh Sharma, Sarah Herring, Scott Korte, Amy E Baxter, Derek A Oldridge, Josephine R Giles, Madison E Weirick, Christopher M McAllister, Moses Awofolaju, Nicole Tanenbaum, Elizabeth M Drapeau, Jeanette Dougherty, Sherea Long, Kurt D'Andrea, Jacob T Hamilton, Maura McLaughlin, Justine C Williams, Sharon Adamski, Oliva Kuthuru, UPenn COVID Processing Unit; Ian Frank, Michael R Betts, Laura A Vella, Alba Grifoni, Daniela Weiskopf, Alessandro Sette, Scott E Hensley, Miles P Davenport, Paul Bates, Eline T Luning Prak, Allison R Greenplate, E John Wherry

PMID: 34462751 PMCID: PM8404899 DOI: 10.1101/2021.08.23.457229
Free PMC article

Abstract

SARS–CoV–2 mRNA vaccines have shown remarkable efficacy, especially in preventing severe illness and hospitalization. However, the emergence of several variants of concern and reports of
Longitudinal Measurement of Immune Memory

Antibodies
- SARS-CoV-2-Specific Response
- anti-Spike/RBD Neutralization

Memory B Cells
- Spike^+ NTD^+ RBD^+ S2^+ (4, 4, 8)

Memory T Cells
- Spike Peptides (8)

Decay Rate of Boosted Antibodies & T Cells = Decay Rate from Peak 2-dose mRNA
Cytotoxic T cells

Ad26.COV2.S

BNT162b2

% IFN+ / CD8+ T Cells

Time Following Immunization

Month 1

Month 8

WA
Delta
Omicron

0.036
0.029
0.031
0.061
0.062
0.051

0.028
0.023
Helper T cells

Ad26.COV2.S

BNT162b2

% IFN+ / CD4+ T Cells

Time Following Immunization

Month 1

Month 8

WA
Delta
Omicron

0.037 0.035 0.036
0.026 0.030 0.029

0.033
0.027
Goal #2:
Prevent all symptomatic illness
Outbreak of SARS-CoV-2 Infections, Including COVID-19 Vaccine Breakthrough Infections, Associated with Large Public Gatherings — Barnstable County, Massachusetts, July 2021

Catherine M. Brown, DVM¹; Johanna Vostok, MPH¹; Hillary Johnson, MHS¹; Meagan Burns, MPH¹; Radhika Gharpure, DVM²; Samira Sami, DrPH²; Rebecca T. Sabo, MPH²; Noemi Hall, PhD²; Anne Foreman, PhD²; Petra L. Schubert, MPH¹; Glen R. Gallagher PhD¹; Timelia Fink¹; Lawrence C. Madoff, MD¹; Stacey B. Gabriel, PhD³; Bronwyn MacInnis, PhD³; Daniel J. Park, PhD³; Katherine J. Siddel, PhD³; Vaira Harik, MS⁴; Deirdre Arvidson, MSN⁴; Taylor Brock-Fisher, MSc⁵; Molly Dunn, DVM⁵; Amanda Kearns⁵; A. Scott Laney, PhD²

During July 2021, 469 cases of COVID-19 associated with multiple summer events and large public gatherings in Barnstable County, Massachusetts, were identified. Transmission might consider expanding prevention strategies, including masking in indoor public settings regardless of vaccination status.
FIGURE 1. SARS-CoV-2 infections (N = 469) associated with large public gatherings, by date of specimen collection and vaccination status* — Barnstable County, Massachusetts, July 2021
Phase 3 trials created unrealistic expectations for protection against all symptomatic illness
mRNA vaccines:
Pfizer
First COVID-19 Occurrence From 7 Days After Dose 2
Phase 2/3 Efficacy – Final Analysis

Subjects WITHOUT Evidence of Infection Prior to 7 days after Dose 2

<table>
<thead>
<tr>
<th>Efficacy Endpoint</th>
<th>BNT162b2 (30 µg) N=18,198</th>
<th>Placebo N=18,325</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Surveillance Time (n)</td>
</tr>
<tr>
<td>First COVID-19 occurrence ≥7 days after Dose 2</td>
<td>8</td>
<td>2.214 (17,411)</td>
</tr>
</tbody>
</table>

Total surveillance time: 1000 person-years for all subjects within each group at risk for the endpoint.
Pr=Posterior probability
Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study

Sara Y Tartof, Jeff M Slezak, Heidi Fischer, Vennis Hong, Bradley K Ackerson, Omesh N Ranasinghe, Timothy B Frankland, Oluwaseye A Ogun, Joann M Zamparo, Sharon Gray, Srinivas R Valluri, Kaije Pan, Frederick J Angulo, Luis Jodar, John M McLaughlin

Summary
Background Vaccine effectiveness studies have not differentiated the effect of the delta (B.1.617.2) variant and potential waning immunity in observed reductions in effectiveness against SARS-CoV-2 infections. We aimed to evaluate overall and variant-specific effectiveness of BNT162b2 (tozinameran, Pfizer–BioNTech) against SARS-CoV-2 infections and COVID-19-related hospital admissions by time since vaccination among members of a large US health-care system.
In All Age Groups, Vaccine Effectiveness Wanes Over Time Against Infections but Not Against Hospitalizations

SARS-CoV-2 Infection

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Adjusted VE (95% CI)</th>
<th>Months After Full Vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-15 Years Old</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16-44 Years Old</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>45-64 Years Old</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>65+ Years Old</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>All ≥12 Years Old</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

COVID-19-Related Hospitalization

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Adjusted VE (95% CI)</th>
<th>Months After Full Vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-15 Years Old</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16-44 Years Old</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>45-64 Years Old</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>65+ Years Old</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>All ≥12 Years Old</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Vaccine effectiveness against **infection** over time
Adults ≥18 years of age
Vaccine effectiveness against **infection** over time
Adults ≥18 years of age

- **February**
- **March**
- **April**
- **May**
- **June**
- **July**

<table>
<thead>
<tr>
<th>Vaccine Effectiveness (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Introduction of Delta variant
- **Late May**
 - Delta: 7%
- **Mid-July**
 - Delta: 94%

Legend:
- Nanduri et al.*
- Nursing Home Residents
- Rosenberg, et al.
- Puranik, et al. (Pfizer)
- Puranik, et al. (Moderna)
- Fowlkes et al. **
- **HCWs, first responders**
- Keelher, et al. **
- **HCWs, frontline workers**
Protection against mild or asymptomatic infection is mediated by high-titers of circulating, virus neutralizing antibodies, which are relatively short-lived.
Virus-specific neutralizing antibodies
The Israeli experience: Erosion in protection against severe disease?
Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel

Yinon M. Bar-On, M.Sc., Yair Goldberg, Ph.D., Micha Mandel, Ph.D., Omri Bodenheimer, M.Sc., Laurence Freedman, Ph.D., Nir Kalkstein, B.Sc., Barak Mizrahi, M.Sc., Sharon Alroy-Preis, M.D., Nachman Ash, M.D., Ron Milo, Ph.D., and Amit Huppert, Ph.D.

ABSTRACT

BACKGROUND

On July 30, 2021, the administration of a third (booster) dose of the BNT162b2 messenger RNA vaccine (Pfizer–BioNTech) was approved in Israel for persons who had received two doses of the vaccine at least 6 months earlier.
The Israeli Experience

• 75% of participants greater than 70 years old.

• 60-69-year-olds: Incidence of severe illness was 2.8% in the non-booster group and 1.3% in the booster group.

• 70-79-year-olds: Incidence of severe illness was 7.5% in the non-booster group and 1.3% in the booster group.

• >80-years-old: Incidence of severe illness was 18.2% in the non-booster group and 7.9% in the booster group.
TO THE EDITOR: Residents of long-term care facilities are particularly vulnerable to severe and fatal coronavirus disease 2019 (Covid-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To protect this population, in April 2020, the Israeli government launched a national-level task force, “Senior Shield,” that aimed to support long-term care facilities in managing the Covid-19 crisis. The main efforts included supplying personal protective equipment, initiating under 20 years of age. In this analysis, we calculated the weekly incidence of PCR-confirmed SARS-CoV-2 infection, hospitalization for severe Covid-19, and Covid-19–related death. Changes in incidence were analyzed with the use of Poisson regression models, as evaluated separately for each group and time period (weeks 26 to 30 before the booster campaign and weeks 31 to 36 after the booster campaign). We compared the rates during a calendar week of interest with the rates

C Uptake of Booster Dose According to Study Group

- Residents of long-term care facilities
- General population, ≥60 yr of age
- General population, 20–59 yr of age
- General population, <20 yr of age
The Israeli Experience: Part II

• “Among persons who were younger than 60 years of age, no significant decreases [in the booster group] were observed in the incidence of either infection or hospitalization during the study period.”

• “In the current study, after the initiation of an extensive booster campaign with high vaccine uptake, we found a significant, rapid, and consistent reduction in COVID-19 burden among persons in the same age group who were living in long-term care facilities.”

• “Our results suggest the important real-life effects of the nationwide COVID-19 booster program among residents in long-term care facilities.”
New York State, through December 20, 2021
Pfizer Booster Study
Cumulative Incidence Curve for First COVID-19 Occurrence After Booster Vaccination – All Available Efficacy Population

Curves diverge rapidly, starting even before 7 days after booster

Note the 2 severe cases met the FDA definition only, based only on SpO2 <93%. They were not hospitalized.
Relative Vaccine efficacy during blinded follow-up period
Booster dose was highly effective against symptomatic COVID-19

Subjects WITHOUT Evidence of Infection Prior to 7 days after Dose 2

<table>
<thead>
<tr>
<th>Efficacy Endpoint</th>
<th>BNT162b2 (30 µg) N=4695</th>
<th>Placebo N=4671</th>
<th>RVE (%) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First COVID-19 occurrence from ≥7 days after booster vaccination to <2 months after booster vaccination</td>
<td>6 0.823 (4659)</td>
<td>123 0.792 (4614)</td>
<td>95.3 (89.5, 98.3)</td>
</tr>
</tbody>
</table>

Total surveillance time in 1000 person-years for the given endpoint across all participants within each group at risk for the endpoint
RVE = relative vaccine efficacy of the BNT162b2 booster group relative to the placebo group (nonbooster)
Booster dosing

• If the goal of COVID-19 vaccines is to prevent severe disease, which is mediated by immune memory cells, all available epidemiological and immunological evidence in the US supports the fact that protection is holding up.

• If the goal of COVID-19 vaccine is to prevent all symptomatic illness (a high bar), which is mediated by circulating, neutralizing antibodies, then we need to define what level of symptomatic illness is acceptable, because neutralizing antibodies will fade over time, even after a third dose.
Pfizer mRNA vaccine effectiveness (VE) against infections with Delta and Omicron variants, United Kingdom

- Increased waning immunity for Omicron vs Delta
- mRNA vaccine booster increased VE against Omicron

Andrews et al.. https://khub.net/documents/135939561/430986542/Effectiveness+of+COVID-19+vaccines+against+Omicron+variant+of+concern.pdf/f423c9f4-91cb-0274-c8c5-70e8fad50074
Israeli Meme
Omicron
Omicron is highly mutated
OMICRON IS A HIGHLY MUTATED AND DISTINCT LINEAGE

- >50 mutations, 26-32 concentrated in spike including all four major neutralization sites targeted by neutralizing antibodies
- Others with unclear consequences but implicated in increased ACE2 binding, immune escape and infectivity
- Not related to existing VOC lineages; still evolving: some sequences lack the del69-70 mutation traceable by PCR

https://nextstrain.org/ncov/gisaid/global?l=radial&m=div
https://covdb.stanford.edu/page/mutation-viewer/
https://sars2.cvr.gla.ac.uk/cog-uk/
Why did omicron sweep through the US?
Estimated circulating SARS-CoV-2 variants in the United States

Variant Proportions, September 19 – Jan 1, 2021

[Bar chart and table showing variant proportions]

https://covid.cdc.gov/covid-data-tracker/#variant-proportions
Transmission of Delta variant vs. ancestral strain and other infectious diseases

Delta variant is more transmissible than:
- MERS & SARS
- Ebola
- Common cold
- Seasonal flu & 1918 (“Spanish”) flu
- Smallpox

Delta variant is as transmissible as:
- Chicken Pox

The New York Times
Original graph from 2/28/2020.

Note: Average case-fatality rates and transmission numbers are shown. Estimates of case-fatality rates can vary, and numbers for the new coronavirus are preliminary estimates.
SARS-CoV-2 Omicron VOC Transmission in Danish Households

Frederik Plesner Lyngse1,2,3,*, Laust Hvas Mortensen4,5, Matthew J. Denwood6, Lasse Engbo Christiansen7, Camilla Holten Møller3, Robert Leo Skov3, Katja Spiess3, Anders Fomsgaard3, Maria Magdalena Lassaunière3, Morten Rasmussen3, Marc Stegger8, Claus Nielsen3, Raphael Niklaus Sieber8, Arieh Sierra Cohen3, Frederik Trier Møller3, Maria Overvad3, Kåre Mølbak3, Tyra Grove Krause3, Carsten Thure Kirkeby6

December 22, 2021
Table 3: Relative effect of the Omicron VOC

<table>
<thead>
<tr>
<th></th>
<th>Unvaccinated</th>
<th>Fully vaccinated</th>
<th>Booster-vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omicron households</td>
<td>1.17</td>
<td>2.61</td>
<td>3.66</td>
</tr>
<tr>
<td></td>
<td>(0.99-1.38)</td>
<td>(2.34-2.90)</td>
<td>(2.65-5.05)</td>
</tr>
<tr>
<td>Delta households</td>
<td>ref</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td></td>
<td>(.)</td>
<td>(.)</td>
<td>(.)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>27,874</td>
<td>27,874</td>
<td>27,874</td>
</tr>
<tr>
<td>Number of households</td>
<td>11,937</td>
<td>11,937</td>
<td>11,937</td>
</tr>
</tbody>
</table>
Omicron less virulent
Comparison of outcomes from COVID infection in pediatric and adult patients before and after the emergence of Omicron

Lindsey Wang1,2, Nathan A. Berger2,3, David C. Kaelber4, Pamela B. Davis5, Nora D. Volkow6, Rong Xu1,3,*

1Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
2Center for Science, Health, and Society, Case Western Reserve University School of Medicine, Cleveland, OH, USA
3Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
4The Center for Clinical Informatics Research and Education, The MetroHealth System, Cleveland, OH, USA
5Center for Community Health Integration, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
6National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
Omicron is less virulent than Delta

• ED visits: 15.2% for delta, 4.5% for omicron.
• Hospitalizations: 3.95% for delta, 1.75% for omicron.
• ICU admissions: 0.78% for delta, 0.26% for omicron.
• Mechanical ventilation: 0.43% for delta, 0.07% for omicron.
• Similar results for children 12-17, 5-11, and less than 5 years of age.
COVID-19 metrics in Gauteng, as % of previous wave peak

Dr Ridhwaan Suliman
twitter: @rid1tweets

Wave 3 (delta)
Wave 4 (omicron)
Wave 2 (beta)
Deaths
Cases
Hospital Admissions
Find us online:

vaccine.chop.edu
To ask a question:

• Type your question into the chat box, not the Q&A box
Thank You!

• Instructions on how to claim credit for your participation in today’s Let’s Talk webinar “COVID-19 Update: Kids, Omicron and Boosters” will be emailed to all of today’s participants, along with a recording of the session.

• If you have any additional questions or issues, please email info@paaap.org.

• Registration is open for our 2022 Pediatric Conference, which will take place on March 19th and 20th, 2022 at the Gettysburg Hotel in Gettysburg, Pennsylvania! Make sure to register ASAP to qualify for a discounted registration fee.